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INTRODUCTION

SAE)

Context

Vertical takeoff and landing (VTOL) aireraft have not reached
their operational potential during all-weather instrument flight. A
portion of this problem can be attributed to the inherent
instability of the VTOLsS' current control systems, while the
remainder of the problem is due to inadequate flight displays.

e

teA

Among the design issues that have to be resolved is how to
achieve directional compatibility between control movements and the
immediately resulting display indications. Compatible motion
relationships are critical not only to the precision of continuous
control but also to the prevent.on of control reversals, displacing -
a control in the wrong direction because the movement of a display
element is misinterpreted. Most people expect moving display
elements to represent their own movements. In some cases these

Exd

e
K Pl |

expectancies are so universal that they have been termed "population >

stereotypes." W
When control-display arrangements conform to population %

stereotypes, reaction times are shorter, there are fewer control it

reversals, control movements are more precise, and the operator can

learn to operate a system faster. Bumans are remarkably adaptable ?3

creatures that can learn to operate a control-display system that b

requires control movements in directions opposite to those

expected. The problem arises when a situation occurs that requires o

extremely fast reactions. When this happens, learned habits often F'

break down, and the operator reverts to more stereotypic responses.

The display designer must consider the pilot's "frame of
reference” when choosing between two possible coordinate systems in
which display symbology can move. The designer should determine

4.3

whether the pilot regards the display as representing the external Ev
world moving against the vehicle's reference axes or the vehicle é&
moving against the geographic coordinates of the external world.

With respect to motion compatibility, display symbology may move -

either in the same direction or in the direction opposite to the
control input, depending on whether the pilot's frame of reference
is the actual or desired position of the aircratt.

Al

[

Problems such as these are being addressed in a program at New
Mexico State University’s Behavioral Engineering Labtoratory (BEL)
for the US Office of Naval Research (ONR) and the Naval Air
Development Center (NADZ). A major product of this effurt is a
horizontal display for vertical and translational flight control ]
under zll-weather operational conditiuus (Roscoe, Hull, Simon, and :
Corl, 1981; Roscoe, 1982; Tatro, Corl, and Rascoe, 1983; Tatro and
Roscoe, 1985). The display presents HOrizontally and VERtically.
INteGrated flight control and navigation information (hence, the
HOVERING display).
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This research is concerned with the mutually compatible
integration of several individually developed and validated flight
display and control design principles. Some of these so-called
"prineiples™ have found limited application in operational systems.
More often system designers have not availed themselves of the known
advantages of such features as reduced orders of control, flight-
path prediction, display frequency separation, pursuit as opposed to
compensatory control arrangements, compatible motion, and
dynamically adaptive control/display sensitivity logic. Evidently
they have perceived such features as too costly and risky with
conventional electromechanical display and control technology.

Despite these limitations, throughout the 1970s ONR, in
anticipation of technological advances, supported research on
advanced display concepts at the University of Illinois, and now ONR
and NADC are supporting a program at New Mexico State to put
together all the good old ideas that were once impractical in a
systematic way for potential application to helicopters and vectored-
thrust VIOL aireraft. Our present problem with VTOL airplanes and
helicopters is how to take better 22 .utage of their ability to fly
missions totally beyond the capabilities of fixed-wing airplanes,
and to do so in bad weather and at night.

One objective of this reswarch is to develop a multiple-
regression model of helicopter and VIOL pilot performance as a
funetion of a large number of ~ritical real-world variables,
including mission-relevant task variables, display configuration
variables, and display dynamics variables for aircraft having
variable control dynamics (Tatro and Roscoe, 1985; Wiedemann and
Roscoe, 1985). The resulting generalizable display design
principles will provide guidance applicable to aircraft capable of
vertical as well as translational flight with a high degree of
maneuvering independence in six degrees of freedom.

Through the application of several basic display principles
coupled with a considerable increase in control augmentation, the
HOVERING display represents a positive step toward all-weather
flight capability in VTOL aircraft. With integrated, easily
interpreted information concerning the positions of relevant aspects
of the external environment, projections of present performance, and
magnified indications of deviations from the desired instantaneous
position, the pilot is able to perform hovering and translational
tasks safely and effectively.

Background

A conceptual analysis and review of instrument flight problems
in piloting VTOL aircraft, including helicopters, preceded the
development of a generic VTOL simulation and the initiacion of an
experimental investigation of critical design variables in forward-
and sideward-looking vertical situation displays and downward-
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looking horizontal situation displays (Figure 1). The vertical
displays themselves are large, flat, transparent plasma screens on
which computer-animated contact analog symbology is presented in
real time, and in the case of the downward-looking display, altitude
and vertical rate information are effectively integrated with
F~~izontal positions and rates to achieve accuracy and stability of
vertical and translational flight control.

In the BEL MicroGraphic VIOL Simulator, alongcourse and
crosscourse translational rates and/or accelerations (depending on
the mode in effect) are controlled by a three-axis, spring-centered
control stick mounted on the right-hand arm rest. Alongcourse
tracking is controlled by fore and aft stick displacement from a
center Adetent, and crosscourse tracking by left and right stick
displacement. Rotating (twisting) the stick about its vertical axis
controls the vehicle's yaw (crab) angle relative to the horizontal
veloci'y vector.

=%

The vehicle's heading in the horizontal plane is displayed by a
rotatine compass rose that responds to both crosscourse control
inputs and weather-vaning of the vehicle due to the effects of
relative wind (Figure 2). A turn-rate index line is shown relative
to top-dead-center of the display so that a desired heading can be
captured by matching this index with the desired position on the
rotating compass rose. Crosscourse and alongcourse rates and/or
accelerations are displayed by a position predictor.

T

Vertical flight is regulated by a vertical speed control oy
operated by the pilot's left hand. The vertical speed control is éﬂ
spring-centered and viscously damped and is operated by displacing =
the stick upward to ascend and downward to descend, similar to a i
collective control in a helicopter. For vertical flight control, %3
the information provided by the HOVERING display includes a present &‘
altitude indicator with an imminent altitude predictor, desired :
altitude goal bars, and both desired and actual vertical rate %
indicators (Figure 3).

The present altitude indicator is an octagonal box that dilates - R

as altitude increases and constricts as altitude decreases. ;3
Altitude (size of the octagonal box) is read against a fixed scale
emanating from the center of the display left and right to the
momentary limits of the scale at the display's outer edge. The

- scale limits automatically change by a ratio of 4 to 1 as the
simulated aireraft ascends through the momentary limits and as it
decends within the limits of the next larger scale. Altitude goal
bars provide an indication of instantaneous desired altitude. The
pilot's task is to keep the octagonal box aligned within the
altitude goal bars. The altitude goal bars and the octagonal
altimeter move independently; hence, altitude control reduces to a
basic pursuit tracking task.

(9%
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Desired vertical rate-field indicators consist of four sets of
bars that flow outward to display desired rate of climb and inward
for desired rate of descent. The actual vertical rate indicators
consist of four sets of bars superposed on, but perpendicular to, >
the desired vertical rate-field indicators. The flow of both the ;E
desired and actual vertical rate indicators matches that of the )
octagonal altimeter; outward flow indicates a desired or actual rate

5 21

>, of climb, and inward movement indicates desired or actual rate of E?
lf{ descent. However, there is some question whether the movement of v
?{ the octagonal altimeter is in the appropriate direction for proper .
oy display/control motion compatibility. X
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Experimental Question

=il

Some engineering psychologists and pilots have suggested that
the HOVERING display's presentation of altitude moves in the
opposite direction to a pilot's expectation (recall that the
octagonal box dilates to show climb and constricts to indicate
descent). For example, if a pilot were looking through the floor of
his aireraft, then objects on the ground would expand as the
aircraft descends. Similarly, as a pilot ascends from liftoff, the
scene constriets in terms of the absolute visual angles subtended by
surface objects. If one were to apply this analogy to the HOVERING
display, then the octagonal box should appear to shrink or constrict
as one ascends, and it should appear to grow or dilate during
descent (opposite to the display's current configuration).
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However, there is an alternative argument in support of the
present arrangement that is based on the so-called "principle of the
moving part" (Roscoe, 1968a, 1980). This principle refers to the
notion that the direction that a display symbol moves should match
the pilot's internal representation of that movement. The general
rule is this: The part of the display that moves should represent
whatever it is that the pilot perceives to be moving in response to
a control input; normally it is the airplane. In the simplest case,
movement of a control in a specific direction is expected to affect
display symbology in the same plane and direction as the control
movement (Fitts and Seeger, 1953; Holding, 1957).
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In the case of the HOVERING display, one can think of its
octagonal altitude indicator as a downward-looking "porthole" 5
through which the pilot can see an increasing area below as the =
aircraft rises and a decreasing area as it descends. Viewed in .
this way, the "moving part" (actually the size of the octagonal !
altitude symbol) increases with altitude, and in this context its v
"motion" is consistent with the pilot's internal representation of

up and down. Which direction of motion is more consistent with the §3
pilot's interna: representation of the consequences of his control g%

movements is, cf course, the questicn to ke answered vheaever a
display is designed. '

- i
] ({.
aﬁ Thus the question of whether the pilot views the display as b
3 representing the vehicle moving against the external world or the
* external world moving against the vehicle must be decided when A
éi determining the preferred motion relationships among display symbols —
< and their real-world counterparts. The designer must also consider
o the possibility that figure and ground relationships between the "
}g aircraft and the outside world might change when attention shifts by
fa from the outside world to the display inside the conrkpit.
24y, 3]
i Most research on direction of motion compatibility has been %ﬁ
restricted to attitude presentation (see especially Bauerschmidt and ==
Roscoe, 1960; Roscoe, 1968b; Johnson and Roscoe, 1972; Roscoe and .
Williges, 1975; Ince, Williges, and Roscoe, 1975; Beringer, ﬁ%
L
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Williges, and Roscoe, 1975; Rosece, Corl, and Jensen, 1981; Roscoe
and Jensen, 1981) to map-type navigation displays (Roscoe, Smith,
Johnson, Dittman, and Williams, 1950; Williams and Roscoe, 1950;
Payne, 1952; Roscoe, 1968a, 1968b); and to rotary controls and
rota;y dials (Warrick, 1947; Bradley, 1954; Chapanis and Kinkade,
1972).
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Attitude presentation. With respect to motion compatibility in
attitude presentation, Roscoe and Williges and their students
conducted a series of simulation and flight experiments to compare
displays in which either the aircraft, horizon, or both (frequency-~
separated) moved relative to display coordinates. The results
indicate that nonpilots and pilots with little experience can easily
learn to use the frequency-separated display. These subjects showed
only a small tendency to make the control reversals that
inexperienced pilots are subject to on conventional moving horizon
attitude displays. Highly experienced pilots readily adapL to the
frequency-separated presentation.
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Map-type navigation displays. In map-type pictorial navigation
displays, position and heading of the aircraft are shown relative to
a map of the area. By integrating several separate symbolic cockpit
indicators, fewer transtormations are required by the pilot to
interpret the display's indications. An investigation by Roscoe et
al. (1950) showed that map-type navigation displays are superior to
separate indicators. A direction of motion question associated with
heading on map-type displays is: Should the compass rose rotate

o
.
o~ »

ol

3
)

. " against a fixed lubber line so that heading can always be read at

the top of the display, or should a pointer rotate relative to a
fixed compass rose so that display movement is clockwise when the
aireraft is turning to the right and vice versa?

PR
O N

Payne (1952) experimentally com ared a fixed, north-up frame of
reference with the aircraft rotating .nd translating relative to the
map, versus the map rotating and translating relative to a fixed
aircraft symbol always heading up. Results of this investigation
v suggest that a map-type navigation display should have a symbol
kﬁ representing the aircraft move over a fixed map with the heading
shown on the aircraft symbol (e.g., an arrow). At least a portion
of the flight path would be shown on the fixed map and the entire !

=il

el

Jﬁ display could be manually rotated so that the aircraft symbol could

- be made to fly on an "up" heading. Roscoe (1968a, 1968b) eventually
. concluded that the issue is task dependent and that either frame of

S reference should be selectable.

=

Rotary knobs and dials. A generally accepted principle for
o movement relationships of rotary controls and associated displays
i in the same plane is that a clockwise turn of a control device
should be associated with increasing values, although there are some

» exceptions, such as with a moving pointer on a fixed horizontal or
[H vertical scale with a rotary control beside the scale. In this

g arrangement the most compatible relationship is that in which the

) display indicator moves in the same direction as the side of the
-3 control knob that is nearest to the indicator (Warrick, 1947).
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Bradley (1954) reasoned that several desirable features in a
control/display system with a moving scale and a fixed pointer are
mutually incompatible: The scale should rotate in the same
direction as the control knob (direct drive); the scale values
should increase from left to right; and the control should turn
clockwise to increase settings. However, all three desirable
features are not simultaneously possible. I pending on the system,
the best subset can be incorporated. If there are different kinds
of compatibility involved in a situation, it may be important to
know what type of compatibility is most critical to resolve the
conflict in design.

Some control devices are in a different plane from that of the
associated display. In a study by Holding (1957) in which the knob
and scale were in different planes, rotation of a control knob
caused a pointer to move along a straight-line scale. The results
indicate that subjects' responses tend to be of two types: 1) a
generalized clockwise tendency; and 2) a helical, or screw-like
tendency in which clockwise rotation is associated with mover ant
away from the individual, and counterclockwise is associated with
movement toward the individual (as with nuts and bolts, bottlecaps).

The common element. These loosely related examples of
direction of motion problems all have at least one element in
common: All involve the operator’s stereotypic frame of reference,
or point of view. In the current investigation the issue takes a
form not previously investigated, namely: How does a pilot's
intervening internal representation of the meaning of symbols that
vary in size as a function of altitude affect control/display motion
compatibility? On the one hand, we can think of the symbology as
representing surface objects that subtend decreasing visual angles
as one ascends; or alternatively, one can think cf the downward
field of view that would be visible through a porthole (in this case
octagonal) in the bottom of the aircraft.

0

. e T 1

3 T AN N TR DY L e L Ny . -
NS R I VA Pl R R AN S e I R R P Pl A EEE O AL LN <
R I L N P LA L A R R S O R P SR I AL AL A AN FUN PN N oy A G R S

ARSI R W LN TER ETW E W T MR At E TR TR e L R AT LT M L LR R DR TRt AT R T TN T AT EAWE T B SN IR AUS SONT L YO NN Sl O w0 e B L un‘rw._u;'hmw

i
1

Grd

3 S
1 ”‘"b

2 &Y

§§ By

A

%

wdd e

EE

M

LB

PERTSN
ety
!5

e

MR

@i

A
!

I

7
17

= Y

)

LI I =

Q



L&,

Id
3

GO

N |

]

floess

6w
'
“c_l t

[TESw

o

By tytyt
R

o\ \‘ \‘1»‘

JE— - R SR e Y T T o MR N T K WYL L ST RS TS G A LI T TR S AT N AT AR O S LN 71

PROBLEM

The primary question is whether the HOVERING display's
altimeter moves in the appropriate direction for optimum
display/control motion compatibility. As previously mentioned,
there are some engineering psychologists and pilots that have
suggested that the display's presentation of altitude moves in the
opposite direction to a pilot's expectation. There are reasonable
arguments for both the current direction of motion and movement in
the opposite direction. An experimental evaluvation of the
altimeter's direction of motion (DOM) was conducted to resolve this
question. This evaluation involved the manipulation of relevant
display and-control system variables as well as the altimeter's
direction of motion.

ANALYSIS OF VARIABLES

Experimental Variables

Direction of motion. In this experiment the two alternative
directions of mection of the octagonal altimeter and the vertical
rate fields were varied independently. Currently the octagonal
altitude symbol dilates (expands outward) when the vertical speed
control is uisplaced upward and constricts when the vertical speed
control is displaced downward. Correspondingly, the desired and
actual vertical rate indicators move outward to indicate positive
vertical rates and inward for negative vertical rates. Manipuiation
of the vertical rate-field indicators was also inecluded to test for
interactions with other control and display variables. Qualiitative
by nature, the four combinations of DOM of the alt.: -ter and
vertical rate-field indicators were compared.

Contrel order. In this experiment control order was the single
control variable manipulated. Several different studies have shown
that control order affects tracking performance significantly (e.g.,
Roscoe and Kraus, 1973; Poulton, 1974). The order of control is
determined by the number of times an input signal is integrated to
result in the desired output (Roscoe, 1980). The relationships
between the indices of desired performance and actual aircraft
control are not easily integrated. Therefore, it is desirabdle to
reduce the pilot's task tc second-order or possibly first-order
control (or some combination thereof). In a first-order systenm a
given irput will result in a specific velocity, whereas a given
input in a second-order system will command a given acceleration to
the controlled object.

Fixed Parameters

}i{ i } % ::i ;;‘: ;:( #:}"!:;Z:; Ei{‘?;l\;;ﬁ"}{ :‘P‘{}l 't r 1‘?1 j}t{i*‘ &‘;."- J; ‘1 “m ‘ ~)““""}}{*\Imﬂ"s A ] .A" » f‘& ‘;2\,

Control gain reduction. With respect to the HOVERING dispiay's
altitude presentation, there would be a high degree of variability
in control/display ratios asscciated with changes in altitude
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scales if not compensated for in some way. When the pilot ascends
through the 60-foot scale, the altitude scale limits are changed to
250 feet (Figure 4). As the pilot ascends through the 250-foot
scale, the altitude scale limits are changed to 1C00 feet, and then
4000 feet. Conversely, as the pilot descends, the 4000-foot scale
is replaced by the 1000-foot scale at 1000 feet; and so it goes t»
the 250-foot scale and then the 60-foot scale.

Each time the scale limit decreases (increasing the scale
factor), the display sensitivity is increased. This would cause an
abrupt change in control/display ratio if control gain were held
constant. Sudden reductions in display sensitivity will result in
undercontrolling by the pilot, and sudden increases will cause
instability if not compensated for by associated changes in control
gain or by some other adjustment. To deal with this problem, a gain
reduction logic is programmed to decrease control gain by about one-
half (specifically 0.545) each time the altitude scale factor
increases. Pilots readily adjust to the remaining changes in
control/display ratio (latro et al., 1983; Tatro and Roscoe, 1985).

Prediction time. During development of the HOVERING display it
was determined that a vertical flight-path predictor should be added
to the display (Tatro and Roscoe, 1985). The predictor provides an
approximate indication of where the vehicle will be at some time in
the future based on current control inputs. Results of prediction
time studies have shown this parameter to be an important system
variable, but the results are inconsistent. Some results indicate
that longer prediction times are favorable, whereas others favor
shorter prediction times (Poulton, 1957; Kelley, 1662; Roscoe,
1980). For this experiment, a fixed prediction time of two seconds
was selected, based on pretest evidence that less experienced
subjects benefit from prediction times longer than those
investigated by Tatro.

Prediction order. The order of the vertical flight-path
predictor refers to the number of integration terms inciuded in the
computation. Essentially, it determines the accuracy of the
predictor; the more integration terms included (i.e., higher-order
prediction), the more accurate the predictor, but the performance
benefits from including higher than second-order terms are slight.
Based on performance values previously determined by Tatro et al.
(1983), a second-order computation was chosen for this experiment.

Task and Subject Variables

In addition to the fixed levels of prediction time, prediction
order, and control gain reduction ratio; the two levels each of
altitude and rate-field direction of motion; and the four levels of
control order, there were four tasks (flight scenarios) and four
levels of subject ability based on a pretest, both of which will be
described. Thus the experiment involved a 2 x 2 x 4 x 4 x U4 matched-
subjects design, to be described in the METHOD section.
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Figure 4. Example of éltitude scale changes in the HGVERING
Pty display (Tatro et al., 1383).
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METHOD

1)

Design Considerations

s

Counterbalancing the sequences of presentation of experimental
conditions across subjects is routinely done as a means of
neutralizing intraserial learning and fatigue effects in within-

subject experiments. However, conventional counterbalancing does 323
not serve this purpose well when there is asymmetrical transfer G
among the various experimental treatments (Poulton, 1974).

Asymmetrical transfer (carryover effects from condition to &'
condition) occurs when the transfer effect from, say, condition A to 15

condition B is not the same as that from B to A. In such cases,
counterbalancing will not neutralize intraserial effects and in fact
will result in systematic bias.

& an’.

I/ %i

-

There are several means of coping with the well-known problem
of asymmetrical transfer in experiments involving control/display
direction of motion variables. For example, Wiedemann, Tatro, and
Roscoe (in preparation) showed that the unequal carryover between

* pursuit and compensatory tracking modes (initially present in their
experiment, as expected; Poulton, 1974), was eliminated after the
third day of training by the insertion of buffer trials to allow
interference effects to dissipate before taking test data. Extended
training and buffer trials may be practical in experiments involving
only two treatments, but they quickly become prohibitive in multi-
factor experiments, as does the alternative between-subjects

©E RE

0 3

approach recommended by Poulton. 'gg%
e
Experimental Design j
ra .

A reasonably economical compromise is a matched-subjects design
(Matlin, 1979) in which the experimental treatments having high
probability of differential facilitation and interference effects
are assigned individually to relatively small independent groups
well-matched in initial ability. Experimental variables not likely
to elicit assymmetrical intraserial effects are then manipulated
within the matched groups. The resulting data are analyzed as if
the experiment were in fact a within-subject design. The matched
individuals in the various independent groups are treated as if they
were the same person. If the individuals at the various "ability
levels" in the different groups are indeed well matched, the
statistical benefits of correlated data will be the reward.

Subject Matchin

In the present experiment, four groups of four flight-naive
male subjects each were matched on the basis of pretest scores on a
time-shared tracking and digit-cancelling test developed by the USAF
Human Resources Laboratory. Initially 20 potential subjects were
tested using a portable basic attributes testing (Porta-BAT) system
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developed by ILLIANA Aviation Sciences for AFHRL. Subjects were
trained and tested over a series of ten 90-second trials followed by
five series of five trials each during which they approached their
individual asymptotic performance levels. An "ability level" for
each subject was based on the means for the best three consecutive
trials in each series.

To match the groups for the four direction of motion
treatments, 16 of the original 20 subjects were selected to form
four stratified ability levels with relatively large differences in
average ability between levels and relatively small variability
within any level. The assignment of one subject from cach level to
each direction of motion treatment, as shown in Table 1, served to
reduce the experimental bias inevitably associated with random
assignment to treatments in conventional between-subjects designs
(Simon and Westra, 1984). In the within-subject portion of the
design each subject was tested on four counterbalanced levels of
control order over four counterbalanced vertical-course sequences,
as shown in Tables 2 and 3.

Flight Task

The four flight scenarios selected for this experiment
simulated variations of a 35-second, point-to-point, terrain
following and avoidance task. The command vertical-flight profile
was limited between 0 feet and 200 feet. These limits were chosen
so the pilot would experience an altitude scale change when crossing
the 60-foot limit. For each level of control order, half of the
trials involved scale changes (either ascending or descending through
the 60-foot level), and half of the trials did not. The task began
in level flight at an altitude of 100 feet, then desired altitude
increased or decreasea, returned to level flight, then increased or
decreased and returned to level flight (see Figure 5).

To induce a realistically elevated workload, subjects were
required to perform a secondary translational tracking task as well
as the primary vertical tracking task. The side task began with a
five-second cruise at 200 knots, followed by a turn (half of the
trials to the right and half to the left) at a rate of one degree
per second, for ten seconds. Subjects again cruised for five
seconds, followed by a turn in the opposite direction of the first,
at a rate of one degree per second, for ten seconds. Subjects then
completed the trial with a five-second cruise at 200 knots.

Performance Measures

When conducting an analysis of variance, a normal distribution
of scores is assumed. When scores are not normally distributed,
they should be appropriately transformed before computing normal
probability statistics. The theoretical distribution of RMS errors
is in accordance with the chi-square distribution, and for sample
sizes typically obtained in tasks similar to the present one, a
logarithmic transformation is the empirically supported choice
(Tatro et al., 1983). This transformation consistently yields a
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Table 1

Subject Matching by Ability Level into DOM Treatment Groups

SN
l:v ¢

DOM Treatment Ability Level i
!
Altimeter Rate Fields 1 2 3 4 Mean Yl
Out/Down Out/Down 420 370 345 276 353 N
Out/Down Out/Up 443 379 320 290 358 ga
C¢ut/Up Out/Up 410 387 346 289 358
Out/Up Out/Down 408 402 36L 278 363
g
Table 2

g

Control Order by Session for All DOM Treatment Groups on Each Day

Ability Level Control Order by Session %

1 2 3 4 ;3
1 (Mean = 420) .00 1.75 125  1.50 ‘i
2 (Mean = 384) 1.25 1.00 1.50 1.75 -
3 (Mean = 344) 1.50 1.25 1.75 1.00 K%
4 (Mean = 283) 1.7 1.50 1.00 1.25 61

-
LAl

Table 3

Counterbalanced Seaquences of Presentation of the Four Vertical Courses
to the Four Subjects in Each DOM Treatment Group During Each 16-Trial
Session Each Day

Py

Ability Level Courses by Trials B
1 (Mean = 420) ADBCCBODAADSBTCTCEBD A Ei
2 (Mean = 384) BACDDTCAPBBACDTDTCAB |
3 (Mean = 344) CBDAADBTCTCBUDAALDTEBSGC {g
I (Mean = 283) DCABBACDTDTCABEBATCTD 5
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Figure 5. Vertical flight paths with the location of the scale change.
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good approximation of a normal distribution and serves to homogenize
the variances of the distributions for the different experimental
treatments (VanderKolk and Roscoe, 1973).

As a second performance measure for the vertical dimensicn,
the number of control reversals was scored. Control reversals have
been defined in different ways by different investigators, but their
essential characteristic is a persistent condition in which the
control input serves to increase rather than reduce a positional
error. For this experiment, "persistent" was defined as three-
tenths of a second or more during which the vertical control was
displaced in the wrong direction by an amount exceeding ten percent
of the full stick displacement capability, relative to its position
over the preceding four-tenths of a second.

Procedure

Before beginning the experiment, subjects were given a 20-
‘minute briefing on the HOVEEING display, followed by two practice
trials. The briefing instructions were designed to provide a
different but equally logical rationale for each of the four
direction of motion presentations flown by the four independent
subject groups. These rationalizations were essentially repetitions
of the respective ®explanations of the possible alternative points of
view given previously. In one case the altimeter octagon was to be
thought of as varying in size .;ith the surface area that could be
seen through a downward-looking porthole; in the other case, varying
with the visual angles subtended by surface objects.

On each of two consecutive days subjects flew four i2-minute
sessions with five-minute rest breaks between sessions. Each
session consisted of sixteen 35-second trials with ten-second
relaxation intervals between trials (16 x 45 = 720 seconds -- 60 = 12
minutes). All 16 trials were flown with the control-order specified
for that subject on that session, as shown in Table 2. The
particular course flown on a given trial was specified for that
subject by the counterbalanced sequences shown in Table 3. Tables 2
and 3 apply to all DOM treatment groups. Following each trial,
tracking error scores were displayed to the subject.
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RESULTS

Summaries of the analyses of variance, including significant
main effects and first-order interactions and the associated cell
means for each dependent measure, are presented in the APPENDIX.
Significant second-order (three-way) interactions appeared in
several analyses and are reported as such. However, the cell means
for these interactions are not included in the tables because the
interactions are beyond comprehensible interpretation. Selected
main effects and first-order interactions to be described are shown
graphically in Figures 6 through 11.

Subject Abilities

Tracking performances on all three dependent measures bore a
strong, direct relation to the pretest "ability" scores used to form
the matched groups, as shown in Figure 6. A similar relation was
found in terms of control reversals for ability Levels 2, 3, and 4,
but one of the four subjects in Level 1 made a sufficient number of
reversals to disrupt the general trend, as shown in Figure 7.
Nevertheless, it was evident that use of a predictive covariate
measure of this type in a matched-subjects design significantly
reduced the experimental bias inevitably associated with random
assignment of subjects to treatments (Simon and Westra, 1984).

Mission Scenarios

The four different vertical courses elicited statistically
reliable but numerically small differences in scores for each of the
three log RMS performance measures, as shown in Table 4, Further-
more, the order of the scores differed from measure to measure with
the result that the averages of the vertical, lateral, and
longitudinal log RMS errors were virtually identical for the four
courses. Thus it appears that the courses differed quantitatively
only in terms of their tendency to elicit control reversals, with
Course C (two altitude scale changes) eliciting the largest number
of reversals and Course D (one scale change) the second largest
number. Courses A and B had no scale change (Figure 5).

Control Order

Variations in the order of vertical control between 1.00 and
1.75 had a statistically significant effect on vertical RMS error
only and virtually no effect on translational control or the
frequency of control reversals. As control order was reduced from
1.75 to 1.50 to 1.25 to 1.00, vertical RMS errors in feet decreased
in an almost perfectly linear progression from 20.9 to 18.6 to 16.2
te 14.8, an overall reduction of almost 30 percent. Because this
systematic effect was relatively independent of the levels of other
experimental, task, or subject variables, there is no evident reason
why pure first-order vertical control should not be adopted as a
fixed parameter.

18

Raaiinn o dh et e |

!
B B T B B R A A T 1 e T N N e A



R 2 LI AT IACHY SRy
AR AR LSS AR AT RS B MERIRLS
;

g I Rt Y « AP AP
ACOA SRR \l.{‘-\ Li" \.{x‘t .ftl.".\':v:}’u )\\(‘4'.‘1 AR Y *( \.1' PR

"4
e
"
<
M

e
=Y Table 4.
Relative Difficulty of the Four Vertical Courses as Reflected by the
508 Various Performance Measures
258
Soo
= Vertical Course
Rt Performance
Q Measure A B c D Mean
& RMS Error in Feet
Vertical 19.1 18.6 17.4 15.1 17.6
Lateral 26.3 27.5 33.1 33.1 30.0
Longitudinal 12.0 12.3 13.2 14.8 13.1
Average RMSE 19.1 19.5 21.2 21.0 20.2
Control Reversals 0.80 1.60 1.48 1.23 1.14

Direction of Motion

The main effects and first-order interactions associated with
the independent manipulation of the altimeter DOM (the size of the
octogon) and the rate-field DOM (direction of flow) were
statistically significant in every case, but were mixed in direction
for the different dependent variables. Vertical control reversals

and vertical log RMS tracking errors favored the original out/up ﬁg

altimeter DOM, whereas translational control yielded smaller error o
s scores with the converse arrangement, all of which are shown

graphically in Figures 8 and 9. The one consistent finding is that o3

whichever altimeter DOM is used, the rate fields should flow in the %5

samc, direetion; in particular, the combination of altimeter out/down
and rate fields out/up must be avoided.

The two DOM variables also interacted strongly with all other e
variables in terms of from one to all four performance measures. £
Most notably, in terms of control reversals, the altimeter DOM qﬁ
interacted with vertical courses, and the rate-fields DOM with e
subject ability levels, as shown in Figures 10 and 11, respectively. _
There were substantially fewer control reversals with the original i
out/up altitude DOM on all courses except D, in which case the P
converse was true. With the rate-fields DOM out/down, there were i 5
fewer control reversals by all ability levels except Level 2, for ™ 3
which there was a large difference in the opposite direction. - ﬁ
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DISCUSSION

The issue of proper direction of motion of the altimeter and
rate fields is a complicated one that interacts with various control
and display system variables. The one consistent finding regarding
this issue is that, whichever way the altimeter moves, the rate
fields should move in the same direction. When the altimeter and
rate fields move in opposite directions, control reversals are more

Bl

B L frequent and tracking performance suffers. The data suggest that
‘ggq whether out/up or out/down motion is better depends on the

‘w,ﬁ performance measure considered, on the flying skill and time-sharing
_5E? ability of the pilot, and very likely on the way pilots are trained
fln to interpret the display.

i Before considering more detailed implications of this

géﬁ experiment, a word is in order concerning their generalizability.
_.;j-:.;-' Whenever stereotypic response tendencies are the object of

&géi investigation, the subject population is a critical consideration.
1 For this initial study, flight-naive subjects were sampled. Hence,
L iRl it would be risky and unwise to expect the same stereotypic response
f2§§ patterns from experienced pilots. However, because the HOVERING
oo display is new to everyone and the dynamics of our generic VTOL

“2{2 simulation do not represent any specific real-world aircraft, we
5@%3 have observed informally that pilots, whatever their experience,

¢
oN%
5

require about the same amount of training as nonpilots to fly the
simulator equally well.

The matching of subjects in stratified ability levels based on
pretest scores on the USAF time-shared tracking and digit-cancelling
test served its purpose well. Results indicate that overall
tracking and time-sharing performance in terrain following and
avoidance improved systematically with increasing initial &bility
scores. For all dependent measures, performance varied directly
with initial ability, with the exception that one subject in the
highest ability level made a disproportionately large number of
reversals. Several interactions with ability were significant over
all dependent measures.

Display and control system variables were manipulated in the
vertical dimension only. For the secondary horizontal control task,
display and control system parameters were fixed on the basis of ;
preiest results or from prior evaluation (Tatro et al., 1983). A g
subsequent study by Wiedemann and Roscoe (1985) involving the most |
critical display and control system variables indicates that control ;
order of 1.6 (mixed velocity and acceleration) is a near-optimum
value for translational control, rather than the pure acceleration
control used in the horizontal plane in this study.

an . DAL -

The evident reason for the discrepancy between the optimum
control orders found by Tatro et al. and by Wiedemann and Roscoe is
because the latter investigators tested a wider range of control
orders in combination with wider ranges of all other criticel
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g% variables. Particularly in the more complex maneuvers included in
two of Wiedemann and Roscoe's flight scenarios, pure acceleration
control (second-order) became quite difficult to manage. The

!! consequence of using pure acceleration translational conirol in the

present experiment is that absolute performance levels in the
horizontal dimension should not be generalized to systems optimized

;{ with respect to other design variables.
P
In this experiment, the secondary task was designed to create %
= an elevated workload and to provicde ar inferential measure of the i
5w interactive effects of contrcl and display system variables involved
= in the primary task. The results indicate that the secondary task
& served both purposes well. Vertical control, both in terms of ‘
§§ control reversals and tracking perroruwance, was better with the
o altimeter in the out/up configuration, whereas lateral and
- longitudinel tracking errors indicate that performance was better
b with the altimeter out/down.

These results suggest a time-sharing tradeoff between the two
] directions of motion. With the altimeter out/up, when pilots are
ié tracking near the lower limit of a scale, the vertical goal bars
constrict almost to a dot, as does the octagonal altimeter if the
pilot is on target. Under this condition, much smaller errors can

gg be detected and corrected than is the case when the symbol is
i dilated in the out/down mode. However, making these fine

. discriminations takes more attention from the secondary

ii translational task with a consequent performance decrement in
. longitudinal and lateral control.

]

Ly The time-sharing tradeoff between horizontal and vertical
L control is complicated further by the differences in scanning
required in the out/up and out/down modes. In this experiment, the
four vertical courses contained level flight altitudes of zero, 50,
!! 100, 150, and 200 feet. Thus, in the out/up mode, the octagon
? ranged in size from almost a dot at zero feet to 5/6 of its fully
dilated size at 50 feet on the 60-foot scale. Conversely, in the

V7 e

ia out/down mode, the octagon ranged from its fully dilated size at
SN zero-feet to a minimum of 1/6 of its fully dilated size at 50 feet
on the 60-foot scale.
éa So, by virtue of the level flight altitudes that happened to be
- chosen for this experiment, the octagon in the out/down mode was
o larger on average than it was in the out/up mode, and it only
Qi briefly reached its minimum possible size as it passed through the
- 60-foot/250-foot scale change (once on Course D and twice on Course i
- C). As a consequence, the center of the display was somewhat less j
5{ cluttered than it was in the out/up mode, and slightly more scanning

was required between the secondary horizontal task and the primary
vertical task. On balance, the out/up mode favored vertical i
o control, and the out/down mode favored translational control. :

Four vertical flight paths were used in this study. The four i

courses were designed to simulate maneuvers typical of those called
By . for in terrain following and terrain avoidance missions. Tracking

;
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performances were inconsistent across the three log RMS measures,
evidently because of the varying attentional demands imposed on the
pilot over the different courses. Course C had two scale changes
and one change in vertical direction, whereas course D had only one g
scale change, but the pilot was required to fly level at zero feet.

Course B had a change in vertical direction, whereas course A had no
changes in scale or direction (see Figure 5).

[ ve ]

833

Flight tasks used in the Wiedemann and Roscoe (1985) study were
takeoff, terrain following and landing, and the standard instrument
departure used by Tatro et al. (1983). Results of that experiment
indicate that optimum values for some display and control parameters
vary as a function of the phase of a mission and also with changes
in scale factor of the octagonal altimeter and in control gain as
the aircraft ascends and descends. These results suggest that when
conducting experiments one should evaluate the effects of the
factors over several types of mission scenarios. By following this
procedure the experimenter is able to obtain a clearer view of the
affects of the critical factors.

Control order in the vertical dimension had a significant
effect in the current study. Tracking performance improved as a
function of decreasing levels of control order, with pure velocity
control resulting in best performance over all courses. Missions
involving terrain foliowing and terrain avoidance require that the
pilot constantly make vertical and horizontal control manipulations.
First-order control results in best performance for this type of
task. At this low order of control, the vehicle responds to control
inputs quicker, and pilots have less tendency to overcontrol, both
of which are highly desirable for terrain following tasks.

Because the flight tasks were different, no direct comparison
can be made between the absolute levels of tracking performance in
this experiment and the earlier experiment by Tatro et al. (1983).
However, on a relative basis, in the earlier experiment vertical
tracking error (RMSE = 37 feet) was about twice as large as lateral
or longitudinal error (15 and 18 feet, respectively). In the
present experiment, vertical error (RMSE = 18 feet) was appreciably
smaller than lateral error (30 feet) and only slightly larger than
longitudinal error (13 feet), as shown in Table 4. The evident
reason for the relative improvement in vertical tracking was the
incorporation of the vertical flight-path predictor symbols not
present in the earlier experiment.

ara

L)

The results of this experiment bear only indirectly on the
original theoretical question concerning the relationships among
(1) the direction of vertical control inputs, (2) the pilot's
internal representation of vehicle responses in an earth-referenced
versus vehicle-referenced context, (3) the increasing or decreasing
size of a display symbol representing altitude, and (4) the dilating
or constricting flow of rate fields indicating speeds of vertical
transition. The lack of consistent differences favoring either "out
is up"” or "out is down" suggests that there is no stereotypic
relationship between symbol size, direction of control inputs, and
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&Q internal representation of the frame of reference, so long as symbol
size and direction of rate-field flow are consistent.

E Because this experiment involved only the downward-looking
. HOVERING display, its compatibility with a computer-animated contact
analog display or a direct view of the outside world was not

oy addressed. Thus, the preferred direction of motion for the
h altimeter octagon may depend on these and other considerations

not yet investigated, particularly ones associated with the future
incorporation of additional display functions, map detall, and both
; forward- and downward-looking sensor imagery. In whatever way such
developments may affect the direction of motion question, the
. evident superiority of the HOVERING display over other attempts at
Zﬁ integrating the information required for vertical and translational
= flight control should not be lost.
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APPENDIX g

SUMMARIES OF ANALYSES OF VARIANCES

| 3 =]

Table A-1. Numbers of Control Reversals

Table A-2. Vertical Log RMS Error (X 100)

e Table A-3. Lateral Log RMS Error (X 100) g
ﬁv |
"t‘ Table A-4. Longitudinal Log RMS Error (X 100) ]
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) Table A-1

|
b
D
I
]
!
' Summary of Analysis of Variance for Number of Control Reversals

Source of variance: ' daf f
it
! Altimeter: out/up(+) vs out/down(-) 1 11.02%#
Rate-fields: out/up(+) vs out/down(-) 1 12.43%%
Ability: 1vs2vs 3vsl 3 5.46%
3 Control Order 1.00 vs 1.25 vs 1.50 vs 1.75 3 LUl
B Course: AvsBvsCuvsD 3 3.53%
.'*:: Reliable interactions:
ke
Altimeter X rate-fields 1 6.20%
| Altimeter X course 3 3.15%
; o Rate-fields X ability 3 10 ,57%#
Ability X rate-fields X altimeter 3 8.,23%*
b
é\ Cell means and effects:
o Altimeter DOM:
».}
Q! + - There were fewer control reversals
with the out/up direction of
3 0.89 1.40 motion.
' Rate-fields DOM:
%} + - There were fewer control reversals
e with the out/down direction of
1.41 0.87 motion.
g Ability level:
':Q 1 2 3 y The frequency of control reversals
: e varied irregularly among the four
1.27 0.69 1.09 1.53 ability levels.
3 Course:
LS .
A B C D The frequency of control reversals
i :::; differed among the four courses,
S = 0.80 1.06 1.48 1.23 with the least for A and the most
! for C.
o
W X
E ®  probability < .05
E; #%  probability < .01
3
AN
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(Table A-1 continued)

i
Y
Altimeter X rate-fields:

+ - There was a disproportionately ;
large number of control reversals 3

+ 0.97 0.81 when Alt DOM out/down was paired
- 1.8 0.94 with RF out/up. g
i

Altimeter X course:

A - B C D There were fewer control reversals
with Alt DOM out/up for all
+ 0,50 0.62 1.06 1.38 courses except D, where the
- 1.09 1,50 1.91 1.09 converse was true.

Rate-fields X ability:

1 2 3 ] There were fewer control reversals

with RF DOM out/down for all
+ 1.81 0.25 1.41 2,19 ability levels except 2, where the
- 0.72 1.13 0.78 0.87 converse was tru-.
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Table A-2

TS AR ARSI T LA A LR T WIS NV AL AL A G S

Summary of Analysis of Variance for Vertical Log RMS Error

Source of variance:

Altimeter: out/up(+) vs out/down(-)
Rate-fields: out/up(+) vs out/down(-)

Ability: 1vs2vs3vsl

1
1
3

Control order: 1.00 vs 1.25 vs 1.50 vs 1.75 3 21.82%%
3

Course: AvsBvaeCuwvsD

Reliable interactions:

Altimeter X ability
Altimeter X course
Rate-fields X ability
Rate-fields X control order
Rate-fields X course
Ability X course

Ability X rate-fields X altimeter
Ability X control order X rate-fields

Course X rate-fields X altimeter
Course X ability X rate-fields

Cell means and effects:

Altimeter DOM:

+ -

122 127
Rate-fields DOM:

+ -

126 123
Ability level:

1 2 3 y

111 1% 128 139

af £

13.38%#
8.36%#

10.35%*

43,34+
4,53
4,05%*
5.20%#
2.84¢
122,29%*
2.26%
2.95%
2.30%

W WO WO W www

Vertical tracking was better with
the out/up direction of motion.

Vertical tracking was better with
out/down direction of motion.

Vertical tracking improved as
initial ability increased.

%  Probability < .05
#* Pprobability < .01
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(Table A-2 continued)

i3]
3
g4
Control order:
1.00 1.25 1.50 1.75 Vertical tracking improved with P
decreasing orders of coatrol. e
M7 121 127 132
Y
Course: mg
A B C D Vertical tracking performance 7
) differed among the four courses, E%
128 127 124 118 with D proving the easiest.
Fe%
Altimeter X ability: @
1 2 3 b Performance was better with -
Alt DOM out/up for all ability Ej‘
+ 122 110 127 129 levels except 1, where the ;
- 100 128 130 1u8 converse was true.
b
Altimeter X course: i3
A B C D With Alt DOM out/down, performance ;
was disproportionately bad on zﬁ
+ 124 128 124 112 course A; with Alt DOM out/up,
- 132 127 124 124 nerformance was disproportionately

good on course D,

Rate-fields X ability:

23

1 2 3 y For ability levels 1 and 2, perf-
ormance was better with RF DOM ;
+ 114 134 122 134 out/down; for ability levels 3 i
- 109 104 134 143 and U4, the converse was true. gg

Rate-fields X control order:

)
28]

R

1.00 1.25 1.50 1.75 With RF DOM out/up, performance
deteriorated more with increasing
+ 117 124 126 137 control order than it did with
- 117 119 127 127 RF DOM out/down.
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@ (Table A-2 continued)

i

Y

E? Rate-fields X course:

G

i A B C D With RF DOM out/up , performance

. differed little among courses; with

» + 127 121 128 123 RF DOM out/down, there were

& - 129 128 120 113 relatively large differences among

courses.

§Q Ability X course:

RN

. A B C D For ability level 1, performance

£ was disproportionately good on

ia 1 114 118 113 105 course D, and for ability level

2 124 121 115 118 4 it was disproportionately bad

- 3 127 138 130 118 on course A.

Eﬁ . 4 147 137 138 132
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Table A-3 ;3
Summary of Analysis of Variance for Lateral Log RMS Error
%)
Source of variance: daf £
3
Altimeter: out/up(+) vs out/down(-) 1 106,36%% &
Rate-fields: out/up(+) vs out/down(-) 1 12.84%%
Ability: 1vs2vs3vsh 3 108.61%* ;
Control Order 1.00 vs 1.25 vs 1.50 vs 1.75 3 67 ;}
Course: AvsBvsCuvsD 3 8.02%% :

)

Reliable interactions:

{Ef; H

Altimeter X rate-fields 1 119.67%%*
Altimeter X ability 3 43.08%% 6}
Altimeter X control order 3 4, 3g%x 23

Rate-fields X ability 3 15.83%%
Ability X rate-fields X altimeter 3 67.60%* Eg
Course X rate-fields X altimeter 3 3.50% =
Cell means and effects: §3
Altimeter DOM: %
+ - Lateral tracking was better with &

the cut/down direction of motion.

-_—

157 138

IvEey
chztel

Rate-fields DOM:

+ - Lateral tracking was better with .

the out/down direction of motion. a

151 144 4

Ability level: b
1 2 3 y Lateral tracking improved as initial

[Sotd

ability increased.

130 132 161 166

Course: cg

A

A B C D Lateral tracking error differed _among - -

the four courses, with A and B proving

142 144 152 152 easier than C and D. it

§

£

*#  probability < .0% o

#%*  probability < .01 id
X v
H 'R
X A%
,} ‘:j :
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{(Table A-3 continued)

:
%2

%3 Altimeter X rate-fields:
G
- + - With RF DOM out/up, Alt DOM has
no differeniial effect, with RF DOM
A + 150 163 out/down, Alt DOM has a large
o - 152 125 differential effect.
% Altimeter X ability:
1 2 3 4 Performance was better with Alt DOM
i . out/down for all ability levels
o + 134 145 185 163 except Y4, where the converse was
- 127 120 136 170 true.
i% Altimeter X control order:
) 1.00 1.25 1.50 1.75 With Alt DOM out/down, performance
% tended to improve with increasing
e + 152 158 154 162 control order; with Alt DOM out/up,

- 140 141 139 133 the converse tended to be irregularly

'ﬂ true.

Rate-fields X ability:

A

1 2 3 ] Performance was better with RF DOM
out/down for all ability levels except
+ 138 126 163 176 2, where the converse was true.
- 122 139 158 157
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Table A-Y '.;:J
Summary of Analysis of Variance for Longitudinal Log RMS Error

N ‘-;:’
;ﬁ Source of variance: daf £

o v
I' Altimeter: out/up(+) vs out/down(-) 1 45, 57%# 53
L) Rate-fields: out/up(+) vs out/down(-) 1 9. 57k
- Ability: 1vs2vs 3vs ¥ 3 127.86%%

h Control Order 1.00 vs 1.25 vs 1.50 vs 1.75 3 1.93 N

o Course: AvsBvsCvsD 3 7.08%# E

) %

> Reliable interactions: K2

" . w
Altimeter X rate-fields 1 197.67%%*

N Altimeter X ability 3 T0.62%% 9
KE Rate-fields X ability 3 13.14%% §
'?ﬁ Rate-fields X control order 3 5.73%% ™
het Ability X rate-fields X altimeter 3 84 ygus .
Ability X control order X rate-fields 9 2.29% ¥
;iﬁ Cell means and effects: '
4,".;\(: ':
o Altimeter DOM: &i
g" + - Longitudinal .racking was better =

with out/down direction of motion. o

L_*gf 116 106 4
N i
1; Rate-fields DOM: y

A
b

+ - Longitudinal tracking was better
) with the out/up direction of motion. pd
i 109 114 il
) |
e Abil® .. level: 183
. if
g ?‘;j'
= 1 2 3 Y Longitudinal tracking improved as
" initial ability increased. -
93 100 123 129 %i

Course: -
i A B C D Tracking error differed among the 3
S four courses, with A and B proving
oo 108 109 112 117 eavier than C and D. v
X U
.}'\ .
Ao *  probability < .05 5
; ¥ probability < .01 3
e
A
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B (Table A-U4 continued)
Altimeter X rate-fields:
-
s + - Performance with either Alt DOM was
kM better when RF DOM was the same.
. + 103 130
- - 115 97 :
n X .
Altimeter X ability: .
*' . 1 2 3 4 With Alt DOM out/up, performance was
disproportionately bad for ability
o + 92 103 187 124 level 3.
é - 93 97 99 135
. Rate-fields X ability:
i .
::'\_ 1 2 3 4 With RF DOM out/up, performance were
disproportionately good for ability
v + 96 92 117 131 1levels 2 and 3 relative to their
! - 90 108 129 127 performances with RF DOM out/down.
5 Rate-~fields X control order:
A
e
hk 1.00 1.25 1,50 1.75 Performances were better with RF DOM
out/up for all conirol orders except
g + 106 116 106 108 1.25, where the converse was true.
w - 115 110 112 118
i
\.:,
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